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A thin disk-shaped container filled with a ferrofluid and suspended in a horizontal linearly polarized ac
magnetic field can perform torsional vibrations around its vertical diameter. In contrast to a recently studied
spherical pendulum, the cell is sensitive to the field direction: It exposes its edge to the stationary or slowly
oscillating magnetic field, and its broad side to the field of a high frequency. When the amplitude of the latter
field is increased, the state of rest gets destabilized, yielding to oscillations near the equilibrium. Further growth
of the field strength results in the onset of the cell rotation. We describe sequences of local and global
bifurcations which accompany those transitions.
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I. INTRODUCTION

Let a container filled with a ferrofluid—the colloidal sus-
pension of magnetic grains—rotate with an angular velocity
�. As long as the fluid rotates as a whole, dissipation is
absent. Application of an external magnetic field changes the
picture. Individual magnetic moments of the particles tend to
align with the field direction; this hinders the free rotation of
particles. As a consequence, the angular velocity of magnetic
nanoparticles � deviates from �, and the ferrofluid rotation
ceases to be rigid. Internal �nonhydrodynamical� rotation of
magnetic grains relative to the surrounding liquid results in
the dissipation of the kinetic energy of the fluid; this effect is
viewed as the action of an internal—so-called rotational—
viscosity �R �1–9�. Originating from viscous torques acting
upon magnetic grains, rotational viscosity obeys the relation
�R���, where � is the shear viscosity and ��1 is the
volume fraction of magnetic grains. Accordingly, �R is much
smaller than the shear viscosity. However, in the absence of
shear flows �as in the case treated below�, rotational viscosity
is the sole source of energy dissipation and plays therefore a
crucial role.

As shown in Ref. �9�, the coefficient �R is proportional to
��−�� /�, therefore its value may be either positive or
negative. A stationary or slowly oscillating magnetic field
impedes free particle rotation ��� thus �R is positive. In
contrast, a rapidly oscillating magnetic field forces the grains
to rotate faster than the fluid does: ���. Hence the grains
spin up the fluid rotation. Such transformation of a part
of the energy of the oscillating magnetic field into the kinetic
energy of the fluid manifests itself as negative viscosity
�R�0 �9–15�.

Recently, we described an interplay of magnetic and me-
chanical phenomena in a simple device: a torsional pendu-
lum filled with a ferrofluid and driven by an oscillating mag-
netic field �16�. Here, dynamics is governed by the set of

three coupled differential equations: the variables are the in-
and off-axis components of the fluid magnetization and the
angular deflection of the pendulum. When the pumping fre-
quency strongly exceeds the pendulum eigenfrequency, this
set is reduced to the sole equation of the Rayleigh type. For
this limiting case, the magnetomechanical intertwinement
can be interpreted in terms of rotational viscosity. Since the
latter is negative, in a sufficiently strong magnetic field the
“friction coefficient” in the Rayleigh-like equation becomes
negative as well. As a result, the growing oscillations of the
pendulum are excited; their velocity and amplitude are
bounded by the negative feedback which owes to the depen-
dence of �R on the flow vorticity. This straightforward ex-
planation does not help much in the situation when the
pumping frequency and the pendulum eigenfrequency are of
the same order. In this case, complicated temporal patterns of
magnetomechanical interactions arise. According to our esti-
mates �16�, these effects can be experimentally observed at
moderate amplitudes of the magnetic field.

The stated results refer to an axisymmetric pendulum: a
sphere or a vertical cylinder filled with a ferrofluid and os-
cillating around the vertical axis of symmetry. Below we
perform the analysis for a disk-shaped ferrofluid pendulum
oscillating around its vertical diameter: the hollow coin-
shaped cell filled with magnetic fluid and hung up by its
edge. Compared to an axisymmetric one, this geometry pos-
sesses quite a few additional features.

First, the orientation of the pendulum state of rest—it can
be characterized by the outward-facing normal n to the disk
surface—is not indifferent to the direction of the external
field H. The coin exposes its edge to the stationary or
slowly oscillating magnetic field �n�H�, and either of its
broad sides �head, tail� to the oscillatory field of a high fre-
quency �n �H�. Since the abrupt change of orientation oc-
curs at a critical value of the product �� �� and � being,
respectively, the field frequency and the magnetization relax-
ation time�, this effect gives a simple and reliable method for
experimental measurement of �. Further, in the sufficiently
strong alternate field, the state of rest is replaced by oscilla-
tions near the equilibrium. These oscillations, caused by the
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negative viscosity effect, yield in their turn to rotations of the
coin-shaped container around its vertical axis. Such rotation
of nonaxisymmetrical cells can be utilized for the design of
efficient mixing and stirring devices driven by oscillating
magnetic fields. Scenario of transition from oscillations to
rotations, centered on a heteroclinic bifurcation, includes
also several saddle-node bifurcations of periodic states.

The outline of the paper is as follows. In Sec. II equations
of motion for the pendulum are derived, and physical mecha-
nisms for the transition between the equilibrium states are
discussed. In Sec. III the stability boundaries for these equi-
libria in the parameter space are determined. Analysis of
weakly nonlinear states in Sec. IV discloses that the onset of
the pendulum oscillations is soft for relatively low pumping
frequencies, but is of the hard-mode type otherwise. Detailed
description of the bifurcation diagram is presented in Sec. V,
where various sequences of transitions between different
states, as well, as cases of hysteresis, are discussed. In Sec.
VI we summarize our findings and estimate the magnetic
field, required for their experimental observation.

II. MAGNETIC TORQUE AND EQUILIBRIA

It is instructive to start with a more general case and con-
sider an uniaxial ellipsoid filled with a ferrofluid and sus-
pended on a soft �its elasticity is negligible� fiber in a hori-
zontal linearly polarized magnetic field Hx=H0 cos �t. If the
axis of symmetry n of the cavity is located in the horizontal
plane x-y, the ellipsoid is acted upon by the only component
of magnetic torque:

T = M 	 H = VM 	 H ,

T = �0,0,T�, T = − VMyH0 cos �t , �1�

where M=MV is the ferrofluid magnetic moment, M is its
density �magnetization�, and V is the volume of ferrofluid.
Let us introduce in the x-y plane the axis x� along n and y� in
the perpendicular direction, and use the magnetization equa-
tion �16�

dM/dt = � 	 M − �M − 
H�/�, � = �0,0,�̇� , �2�

where � is the magnetization relaxation time, 
 the initial
magnetic susceptibility, and � is the angular displacement of
the vector n in the x-y plane. Then, substituting into Eq. �2�
components of the internal field Hx�=Hx�−4�f �Mx� and
Hy�=Hy�−4�f�My�, where f � and f� are demagnetization
factors along the axis of symmetry and in perpendicular di-
rection, we get

�Ṁx� + �Mx� = − �̇�My� + 
H0 cos �t cos � ,

�Ṁy� + �My� = �̇�Mx� − 
H0 cos �t sin � , �3�

where

� = 1 + 4�
f �, � = 1 + 4�
f�. �4�

Two time scales of the problem are periods of the driving
magnetic field �−1 and of the pendulum oscillations �0

−1,

respectively �the latter will be evaluated below�. We restrict
ourselves to the case of high driving frequency ���0, when
these time scales can be separated. On the fast time, the
value of �̇ in Eqs. �3� can be treated as a constant. This turns
Eqs. �3� into the set of linear equations; their integration
yields

Mx� = 
H0�a cos �t + b sin �t�/Z ,

My� = − 
H0�c cos �t + d sin �t�/Z , �5�

with integration “constants”

a = − �̇���2�2 − �� − �̇2�2�sin � + ��� − ���2�2

+ ���2�2 + �� + �̇2�2��cos � ,

b = ����̇��� + ��sin � + ��2�2 + �
2 − �̇2�2�cos �� ,

c = − ��� − ���2�2 − ���2�2 + �� + �̇2�2��sin �

+ �̇���2�2 − �� − �̇2�2�cos � ,

d = �����2�2 + �
2 − �̇2�2�sin � − �̇��� + ��cos �� ,

Z = ��2�2 − �� − �̇2�2�2 + �� + ��2�2�2.

Calculating now

My = Mx� sin � + My� cos � = 
H0

	��a sin � − c cos �� cos �t + �b sin � − d cos ��sin �t�

and averaging the product MyH0 cos �t over the period of
the field variation �i.e., over the fast time�, one finds

T̄ = − VMyH0cos �t = 1
2
H0

2V

	
��2�2 − �� − �̇2�2���̇� − 1

2 �� − ��sin 2��
��2�2 − �� − �̇2�2�2 + �� + ��2�2�2 .

�6�

For a sphere or a vertical cylinder one has f � = f�= f with
f =1/3 and f =1/2, respectively. Thus, in terms of the mag-
netic permeability �=1+4�
, Eq. �4� gives � =�= with
= ��+2� /3 for a spherical cavity and = ��+1� /2 for a
cylindric one. Then, retaining in Eq. �6� only terms with the
lowest power of the dimensionless angular displacement rate
�̇�, we find the magnetic torque acting upon the sphere �in-
dex s� and the vertical cylinder �index c�:

T̄s = −
9
H0

2V��� + 2�2 − 9�2�2�
2��� + 2�2 + 9�2�2�2 �̇� ,

T̄c = −
2
H0

2V��� + 1�2 − 4�2�2�
��� + 1�2 + 4�2�2�2 �̇� . �7�

Remarkably, the torques change sign at a certain critical
value of the field frequency:

�s� = �� + 2�/3, �c� = �� + 1�/2. �8�

As long as �� stays below this value, the magnetic torque is
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directed opposite to the angular velocity, i.e., it plays the
restoring role. However, as soon as the pumping frequency
exceeds the threshold �8�, the torque turns positive and tends
to lead the pendulum away from equilibrium.

For a thin disk-shaped cell one can assume with a reason-
able accuracy f � =1, f�=0, so that � =�, �=1 and hence
the torque �6� takes the form

T = 1
2
H0

2V
��2�2 − � − �̇2�2���̇� − 2�
 sin 2��
��2�2 − � − �̇2�2�2 + �� + 1�2�2�2 . �9�

The main difference between Eqs. �7� and �9� is in the fact
that axisymmetric cavities experience the magnetic torque
only in motion, whereas the nonaxisymmetric cell is acted by
the torque even in the state of rest: at �̇=0 Eq. �9� reduces to

T̄ =

H0

2V�� − 1��� − �2�2�
4��2 + �2�2��1 + �2�2�

sin 2� . �10�

The equation of motion of the disk-shaped pendulum reads

�̈ + ��̇ = T/I , �11�

where � is the friction coefficient and I=�VR2 /4 is the mo-
ment of inertia of a disk which rotates around its diameter. In
the slowly oscillating magnetic field �����, the equation
describes small damped oscillations of the pendulum in the
vicinity of the equilibrium position �=� /2 �see Fig. 1�a��:
putting �=� /2+�, where ��1, one has

�̈ + ��̇ + �0
2� = 0,

�0
2 =

H0
2�� − 1�2�� − �2�2�

2��R2��2 + �2�2��1 + �2�2�
. �12�

Replacing here H0
2 /2 by H2 one finds the pendulum eigen-

frequency in a stationary field ��=0�:

�0 =
�� − 1�H
R����

.

At ��=�� the pendulum changes the orientation of
its state of rest. For a high enough pumping frequency
����� and sufficiently low amplitudes of magnetic field
�see below�, it performs small damped oscillations around
the equilibrium position �=0 shown in Fig. 1�b�:

�̈ + ��̇ + �0
2� = 0,

�0
2 =

H0
2�� − 1�2��2�2 − ��

2��R2��2 + �2�2��1 + �2�2�
. �13�

To explain the change of the equilibrium orientation in the
field Hx=H0 cos �t, we calculate the magnetic field energy
E�t� and the energy dissipation rate Q�t�. Within the approxi-
mation of the linear magnetization law M=
H, these values
are given by

E�t� = − 1
2 �M · H� = − 1

2VMxH0 cos �t ,

Q�t� = − �M · Ḣ� = �VMxH0 sin �t . �14�

In the state of rest ��̇=0�, Eqs. �5� prescribe the value of the
in-axis component of the fluid magnetization

Mx = 
H0 sin ����� cos2 �

�2 + �2�2 +
�� sin2 �

1 + �2�2 	
+ 
H0 cos ��� � cos2 �

�2 + �2�2 +
sin2 �

1 + �2�2	 .

Substituting this into Eqs. �14� and averaging the relation-
ships over the period of field variation yield

Ē = −

H0

2V

4
� � cos2 �

�2 + �2�2 +
sin2 �

1 + �2�2	 , �15�

Q̄ =

H0

2V

2�
�2�2� cos2 �

�2 + �2�2 +
sin2 �

1 + �2�2	 . �16�

The equilibrium orientation of the cell with respect to the
field direction corresponds to the minimum of magnetic en-
ergy at the low field frequencies ����� and to the mini-
mum of the energy dissipation at the high frequencies
�����. Indeed, in the limit of low frequencies the dissipa-
tion rate is negligible, while in the opposite limiting case one
can neglect the energy. In the former case �����, the en-

ergy Ē has a minimum at �=� /2: magnetic field is almost
non-perturbed when it flows down a thin disk �see Fig. 1�a��.
On the other hand, the rate of energy dissipation Q̄ has the
minimum at �=0 at all frequencies. In fact, this is none other
than the heat producing per time unit due to the ferrofluid
re-magnetization. As seen from Eq. �16�, the minimum of the
heat production is reached when the cell is held perpendicu-
larly to the field �Fig. 1�b��: in this position the demagneti-
zation factor f � along the field direction equals unity, so that

Mx takes its minimum value and hence Q̄ is also minimal.
Therefore, in accordance with the Le Chatelier principle, at
high pumping frequencies the coin-shaped cell exposes to
the field its head �tail�.

III. LINEAR STABILITY OF EQUILIBRIUM STATES

Consider now the general case of arbitrary field ampli-
tudes, pendulum angular displacements and angular veloci-
ties. Substituting the magnetic torque �9� into Eq. �11� leads
to the dimensionless equation of motion

FIG. 1. �Color online� Equilibrium orientation of a disk-shaped
ferrofluid pendulum with respect to oscillating magnetic field of
low �a� and high �b� frequency.
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�̈ + 2
� −
���2 − � − �̇2�

��2 − � − �̇2�2 + �� + 1�2�2��̇

+
��� − 1���2 − � − �̇2�

��2 − � − �̇2�2 + �� + 1�2�2 sin 2� = 0, �17�

where � is chosen as a unit of time, and the new dimension-
less parameters are

� = ��, � = 1
2��, � =


H0
2�2

�R2 . �18�

Equilibrium solutions of Eq. �17� correspond to �0=n� /2,
n=0, ±1, ±2, . . .: the container is at rest when either of its
horizontal axes is parallel to the field. Invariance of Eq. �17�
with respect to the transformation �→�+� allows to restrict
the phase space of Eq. �17� to the cylinder −�����. Be-
sides, there is a mirror-like symmetry with respect to the
change of sign of �.

Linearization near the equilibria yields the characteristic
equation for the increment of perturbations �:

�2 − 2�� ���2 − ��
��2 + �2���2 + 1�

− �	 + �− 1�n2��� − 1���2 − ��
��2 + �2���2 + 1�

= 0. �19�

A mere look at this equation discloses the fact, already
known from the previous section: the range of driving fre-
quencies is divided in two parts. The case of low frequency
���� �17� is relatively poor from the point of view of
dynamics. Here, the last term in Eq. �19� is negative for even
n and positive otherwise. Accordingly, the equilibrium with
�=0 is always a saddle point. In contrast, the equilibria at
�= ±� /2 are stable irrespective of the �of course, positive�
value of �.

At the critical value �=�� a degenerate bifurcation oc-
curs: every value of � delivers a stationary solution of Eq.
�17�, so that a continuum of marginally stable fixed points
arises. A breakup of this continuum in the direction of higher
frequencies ���� interchanges the stability properties of
the equilibria. Under these frequency values, the states of
rest at �= ±� /2 are saddles. The equilibrium at �=0, de-
pending on the value of �, is either a node or a focus. The
latter case corresponds to the range of � between the values
�−

foc and �+
foc, where

�±
foc = N�� + � − 1 ± ��� + � − 1�2 − �2�

with N � ��2 + �2���2 + 1���2 − ��−1. �20�

In a realistic physical setup with fast modulation of the field
and weak friction, the value of � is rather small. Accord-
ingly, �−

foc�2N / �2�−2� is also very small, whereas
�+

foc2N��−1� is reasonably large. For very low or very
high values of � the steady state at �=0 is a node. With the
increase of �, evolution of the local phase portrait near this
state follows the transformation of the equilibrium in the
conventional Rayleigh �or Van der Pol� equation under the
parameter variation: stable node → stable focus → unstable
focus → unstable node.

Destabilization of equilibrium at �=0 occurs when the
coefficient at �̇ �the “local friction”� in Eq. �17� vanishes;
this corresponds to the Hopf bifurcation which happens at

� = �cr = �
��2 + �2���2 + 1�

�2 − �
. �21�

Substituting this into the last term of Eq. �17� determines the
dimensionless eigenfrequency �=�0� of the pendulum criti-
cal oscillations

�cr = �2��� − 1� . �22�

IV. WEAKLY NONLINEAR THEORY: ONSET
OF OSCILLATIONS

Near �=�cr, introduction of the complex variable

w =
4��� − 1�� + 2��1 − �/�cr��̇
�8��� − 1� − 4�2�1 − �/�cr�2

− i�̇

+ appropriate nonlinear terms �23�

turns Eq. �17� into

ẇ = ��
� − �cr

�cr
− i�cr + K�w�2 + O��w�4�	w , �24�

where the branching coefficient K is given by the expression

K =
3����2 − ��2 − �� + 1�2�2�
4�1 + �2���2 + �2���2 − ��

. �25�

As shown above, oscillations arise at ����. Therefore,
along the neutral curve �cr��� the sign of K is governed
by the numerator of Eq. �25�. The latter changes its sign at
�*= ��+1+��2+6�+1� /2. For ���* the value of K is
negative, thus the Hopf bifurcation is supercritical and cre-
ates the stable limit cycle. On the opposite, in the whole
range of high driving frequencies ���*, the Hopf bifurca-
tion is subcritical. As usual, the subcritical character of the
bifurcation indicates a hysteresis and implies that oscillations
are born with finite amplitude at a certain value of � below
�cr.

Close to the Hopf bifurcation, the amplitude of newborn
oscillations approximately equals

w ���� − �cr�
K�cr

. �26�

In the region where K changes the sign �and, in fact, in a
wide range around �*�, the denominator of Eq. �26� is small.
Therefore, the amplitude w as a function of � exhibits a rapid
growth, so that already at small deviations of � from �cr the
diameter of the limit cycle in the phase space becomes com-
parable with the size of the cylinder: extrema of the angle �
approach the unstable equilibria at �= ±� /2.

In order to understand the transformations of the phase
portrait of Eq. �17� far from the threshold of the linear sta-
bility �cr, the local expansion �24� is insufficient. Indeed, as
we will see below, the higher-order nonlinear effects occur
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already reasonably close to the destabilization of the equilib-
rium. Further analysis requires a combination of qualitative
reasoning with numerical computations.

V. STRONG NONLINEARITIES: BIFURCATION
DIAGRAMS

Global evolution of nonstationary regimes is related to
creation of heteroclinic contours formed by separatrices
which connect the equilibria at �= ±� /2. Due to the men-
tioned smallness of �K�, this event occurs rather close to the
Hopf bifurcation: on the state diagram presented in Fig. 2,
the curve H of the Hopf bifurcation and the curve het of the
heteroclinic bifurcation are almost indistinguishable. These
curves intersect near �* �but not exactly at �*: see the de-
tailed explanation and the plots below�. For minor values of
� the curve H lies slightly below; for higher values of � the
curve het is the lower of the two. An additional bifurcational
curve rsn1 is located to the right of �* and below H; it marks
the saddle-node bifurcation: finite-amplitude birth of peri-
odic solutions �19� corresponding to rotations of container
around its axis. In the wedge-shaped domain between rsn1
and H a hysteresis is observed: here, regime of stable rota-
tions �in fact, two such regimes: the clockwise one and the
counterclockwise one� coexists with the stable equilibrium.

At the first look, the events—at least for ���*—are
analogous to the textbook transformation “oscillation → ro-
tation” in the cylindric phase space of a pendulum governed
by �̈+sin �=0. It may seem that through the mediation of
heteroclinic orbits stable oscillations near the state of rest are
replaced by rotation of the container around its vertical axis.

Unfortunately, this simplistic bifurcation scenario is in-
compatible with the dynamical system �17�. Incompatibility
follows from the fact that the coefficient at � in Eq. �19�, i.e.,
the sum of the roots of this quadratic equation, is indepen-
dent from n: the same for the state of rest at �=0 and for the
equilibria at �= ±� /2. Accordingly, the sum of two real in-
crements for perturbations near symmetric saddle points at

�= ±� /2 is negative for ���cr and positive for ���cr. The
sign of this sum of eigenvalues �“saddle index”�, in its turn,
is crucial for the stability of periodic solutions born from the
breakup of the homoclinic or heteroclinic orbits �see, e.g.,
Ref. �18��. If the sum is positive, expansion in the flow near
the saddle prevails over contraction, hence the branching pe-
riodic solution is unstable. If the sum is negative, contraction
dominates and the bifurcating periodic state is attracting. The
consequence: if heteroclinic contour is present at a certain
value of � above the Hopf bifurcation, it is repelling
and, hence, cannot serve as a switching mediator between
stable oscillations and stable rotation. Similarly, if such con-
tour is formed below the Hopf bifurcation, it is attracting,
and therefore cannot match unstable oscillations with
unstable rotation.

The actual bifurcation diagram on the parameter plane �,
� is a bit more complicated. Its organizing centers are two
codimension-2 points: the point A on the curve H of the
Hopf bifurcation in which the branching coefficient K
changes sign, and the “neutral heteroclinic contour:” the
point B on the curve het in which the sum of roots of Eq.
�19� vanishes �due to the mentioned n independence of the
corresponding coefficient, exactly at this point the curve het
crosses the curve of the Hopf bifurcation�. The abscissa
value �B of the point B slightly exceeds the abscissa value �*
of the point A. Along with the curves H and het, the diagram
includes five different curves which correspond to saddle-
node bifurcations for periodic solutions of Eq. �17�. In the
course of these saddle-node bifurcations, stable limit cycles
�oscillations or rotations� coalesce with the unstable ones and
disappear.

The neighborhood of both codimension-two points is
shown in Fig. 3. Since nearly all transitions occur in the
extremely narrow interval of the values of �, we have chosen
in Fig. 3�a� as the vertical coordinate not the value of �
itself, but its deviation �-�het from the value which corre-
sponds to the formation of the heteroclinic contour. Even in
these coordinates, important details of location of certain
curves can hardly be resolved, therefore we supply also the
schematic presentation of the bifurcation diagram in Fig.
3�b�.

Intersections of bifurcation curves divide the parameter
plane into ten regions of qualitatively different dynamics; in
Fig. 3�b� they are labeled in the clockwise order. Figure 4
presents qualitative phase portraits for each of the regions;
solid curves denote stable states, the dashed lines show the
unstable ones, whereas the dotted curves depict transients
with “typical” initial conditions.

Of ten segments of the bifurcation diagram, only three are
“macroscopically” resolvable in the basic state diagram of
Fig. 2: the regions 1, 5, and 10 �they correspond, respec-
tively, to regions I, II, and III in Fig. 2�. However, without
the remaining minor regions the bifurcation diagram would
be inconsistent.

Let us proceed to the brief description of the typical bi-
furcation scenarios. The point B of the “neutral heteroclinic
contour” is an important landmark: to the left from B the
contour on the line het is repelling and mediates between the
unstable states �oscillation and rotations�. In contrast, to the
right from B the heteroclinic contour is attracting, therefore

FIG. 2. �Color online� Diagram of states for Eq. �17� with
�=0.01, �=5. Gray stripe: stable equilibria at �= ±� /2, I: stable
equilibrium at �=0, II: stable rotations of the cell, III: hysteresis
between equilibrium and rotations. H: Hopf bifurcation of the equi-
librium, het: formation of heteroclinic contour between the saddles,
rsn1: finite-amplitude birth of rotations. Filled circle A: change of
character of the Hopf bifurcation at �*.
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with its help stable oscillations are transformed into stable
rotation. The point B is an origin of two further bifurcation
curves, both of them corresponding to saddle-node lines bi-
furcations: the line rsn1 below het on which a stable and an
unstable rotation solutions are born, and a line osn1 above
het on which the stable and the unstable oscillatory states
collide and disappear. These curves, located to the left from
the point B, delineate the exponentially thin wedge of hys-
teresis: as � tends to �B, the distance between rsn1 and rsn2
decays as ��B−��e−�/��B−�� with positive �.

Accordingly, for ���* the increase of � results in the
following bifurcation sequence.

�Region 1� Below the curve H the only attracting regime
is the equilibrium state.

�Regions 1→2� On the curve H the supercritical Hopf
bifurcation takes place; between H and the curve rsn3 the
oscillating solution is globally attracting.

�Regions 2→3� On the curve rsn3 two �the clockwise one
and the counterclockwise one� stable rotational states are
born with finite amplitude; above the curve each of these
neutrally stable solutions disintegrates into a stable one and
an unstable one. Since the oscillating state is stable as well,

in this parameter region a hysteresis is observed. Further
growth of � leads to the decrease of the amplitude of the
unstable rotational state.

�Regions 3→4� On the curve het the unstable rotational
solutions touch “from the outside” the separatrices of the
saddle equilibria at �= ±� /2 and form the heteroclinic con-
tour which encircles the cylinder. After the breakup of this
contour under the increase of �, unstable rotations are re-
placed by the unstable oscillatory state. The closed solution
curve corresponding to this state separates in the phase space
the attraction domains of the stable rotations and stable os-
cillations.

�Regions 4→5� On the curve osn1 the limit cycles of
stable and unstable oscillations collide and disappear. The
remaining rotational state becomes the global attractor.

To the right of the point A �that is, for ���*� the bifur-
cation scenarios are different. On the curve osn1 which ter-
minates in this point, a saddle-node bifurcation for oscilla-

FIG. 3. �Color online� Bifurcation diagram for Eq. �17� with
�=0.01, �=5. �a� Computed diagram, �b� schematic diagram. H:
Hopf bifurcation of the equilibrium, het: formation of heteroclinic
contour, osn1,2,3: saddle-node bifurcations for oscillations, rsn1,2,3:
saddle-node bifurcations for rotational states. Filled circles A ,B:
bifurcations of codimension 2.

FIG. 4. �Color online� Qualitative phase portraits for Eq. �17�
with �=0.01, �=5, variable � and �. Numbers on subplots corre-
spond to numbers of regions in Fig. 3�b�. Filled circles: equilibrium
at �=0. Crosses: saddle points at �= ±� /2. Solid �red� curves:
stable periodic states. Dashed �blue� curves: unstable periodic
states. Dotted �green� curves: transients.
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tory states takes place: here the oscillations are born with
finite amplitude. In addition, this domain contains curves
rsn2 and rsn3 on which the saddle-node bifurcations of rota-
tional states occur. Note an additional codimension-two point
where the latter curves join in a singularity of the cusp type.

In this part of the diagram, various bifurcation sequences
are possible; we explain below only the “most relevant” one
�it remains valid also for high values of ��.

�Region 1� Below all bifurcation curves, the only attract-
ing regime is the state of rest.

�Regions 1→10� On the curve rsn1 the limit cycles
corresponding to rotational states are born in a saddle-node
bifurcation. As a result, in region 10 the stable equilibrium
coexists with two �clockwise and counterclockwise�
rotations.

�Regions 10→9� On the curve osn2 the saddle-node bi-
furcation gives birth to the limit cycle which correspond to
oscillations. Therefore, in region 9, there is a triple hyster-
esis: depending on initial conditions, one can observe the
stable equilibrium, the stable oscillations and the stable rota-
tions. The phase curves of unstable oscillations and unstable
rotations serve as boundaries of the basins of attractions of
these regimes.

�Regions 9→7� With the growth of � the amplitude of
the stable oscillations increases. On approaching the curve
het the corresponding limit cycle touches “from inside” the
separatrices of the saddle-points at �= ±� /2: the hetero-
clinic contour appears. Its subsequent breakup leaves in the
phase space two new stable invariant curves which encom-
pass the entire cylinder; they, of course, correspond to stable
rotations. Thereby, in region 7 for each direction there are
two coexisting stable rotational modes: the slower one �born
from the heteroclinic bifurcation� and the faster one. Notably,
the state of rest is stable as well.

�Regions 7→6� The invariant curve corresponding to
slow stable rotations approaches from inside the curves of
unstable rotations. On the line rsn2 these regimes collide and
disappear. In region 6 there is a hysteresis between the stable
equilibrium and stable rotations; their domains of attraction
are separated by the phase curve of unstable oscillations.

�Regions 6→5� On approaching the curve H of the
Hopf bifurcation �which is subcritical in this part of the
diagram� the size of the unstable limit cycle decreases.
On the curve H this cycle shrinks into the point; the only
attracting state in region 5 is the rotation, either clockwise or
counterclockwise.

In the above descriptions we have not mentioned the
region 8; in this curved quadrangular segment of the param-
eter plane, limited by four bifurcation curves, the stable
equilibrium coexists with the stable oscillations. Smallness
of this region makes it a difficult object for an experimental
observation.

Summarizing the bifurcation diagrams, the increase of the
field intensity � invariably transforms the observable state
from the stable equilibrium to the rotation of container
around its axis. However, the intermediate stages of this
transformation depend on the value of the pumping fre-
quency � �and, partially, on the initial conditions of the
experiment�.

VI. DISCUSSION

We have shown that the state of rest and the dynamical
behavior of a disklike ferrofluidic pendulum in an alternate
magnetic field depend on the dimensionless field amplitude
� and frequency �. In a stationary or low-oscillating field
������, the pendulum is at rest for arbitrary values of �,
exposing to the field its edge. For ���� and the weak field,
���cr, the disk is at rest as well but changes its orientation:
now it exposes to the field its broad side. This abrupt 90°
turn of the equilibrium configuration, occurring at the field
frequency �=�� /� can be used for an efficient experimental
measurement of �.

Further, in the sufficiently strong alternate field, the state
of rest is replaced by oscillations near the equilibrium. The
oscillations, in their turn, yield to rotations of the disk-
shaped container around its vertical axis. Scenarios of tran-
sition from oscillations to rotations are centered on a hetero-
clinic bifurcation and include also several saddle-node
bifurcations of periodic states.

Let us evaluate the strength and frequency of the driving
magnetic field which are required in order to observe these
effects in an experiment. According to Eq. �18�, the critical
amplitude of the field is expressed through the function
�cr��� given by Eq. �21�. This function has a minimum �cr

min

at �=�m:

�m
2 = � + �� + 1���, �cr

min = �� + 1���� + 1�2. �27�

Substituting this into the definition of � �see Eq. �18�� deliv-
ers the minimal value of the necessary field amplitude. Its
square is

�H0
min�2 =

2��R2��� + 1���� + 1�2

�� − 1��
. �28�

In addition to the parameters of the ferrofluid and the
radius of the cell, Eq. �28� contains an ill-defined parameter
of
the experimental setup—the friction coefficient �. To esti-
mate it, recall that we neglect here the elasticity of the fiber
on which the container is suspended. In other words, the
eigenfrequency �0

el of torsional oscillations caused by the
elasticity should be much lower than the frequency of oscil-
lations �0 enforced by the field. But the lower the eigenfre-
quency, the smaller is the quality factor q=�0

el /�. Then,
assuming the rather long period of pendulum oscillations
Tel=5 s and the reasonably low quality factor q=5, we arrive
at �=2� / �qTel�0.25 s−1.

Take the hollow flat disk of R=13 mm—similar to inch-
wide coins widespread in many countries—filled with the
same glycerine-based cobalt ferrite ferrofluid as was used in
the experiments of Gazeau et al. �13�. The relaxation mag-
netization time of the fluid was �=8	10−3 s; this yields an
estimate �=�� /2=10−3. Other parameters of the fluid were
the volume fraction of magnetic grains �=13%, the density
�=1.85 g/cm3, �=5.4, �=50 Ps. Substituting those values
and the above estimate for � into expressions �27� and �28�
provides the amplitude and frequency of the critical �mini-
mal� field
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H0
min = 99.3 Oe, �m/�2�� = �m/�2��� = 89.6 Hz.

Checking self-consistency, we observe that the squared di-
mensionless eigenfrequency �el=�0

el� of oscillations caused
by the elasticity of the fiber is much lower than the squared
eigenfrequency �22� of the field-induced critical oscillations

� �el

�cr
	2

=
2�2�2

��� − 1�Tel
2  1.15 	 10−2. �29�

Analysis which we have performed in the preceding sec-
tions, has been based on two restrictive assumptions. First,
we treated only the situation in which the frequency of the
field by far exceeds the eigenfrequency of the pendulum.
Accordingly, our results refer to the observables averaged
over the period of the field. If two frequencies are of the
same order, the averaged quantities should be replaced by
instantaneous values. Instead of the autonomous second-
order differential Eq. �17�, the nonautonomous system of the
fourth order should be treated: Eqs �3��equation of the sec-
ond order for the angular variable. Therefore, instead of the
steady states, periodic regimes will be observed: the disk
varies in time its position, closely following with its appro-
priate �edge or head, respectively� side the instantaneous di-
rection of the alternate field. Further, periodic attractors �os-
cillations, rotations� of the averaged equation will be
replaced by quasiperiodic oscillations/rotations. If the two
frequencies are close to resonance ratios, more complicated
dynamics can be expected �see Ref. �16��.

Another important assumption in the above analysis has
been the neglect of the elasticity of the fiber on which the
pendulum is suspended—see Eq. �29�. Taking weak elasticity
into account would single out the orientation �nt to the non-

twisted fiber and add to the right-hand side of Eq. �17� a
term, proportional to �−�nt. The topological implications of
this term are far-reaching: the cylindrical phase place should
be replaced by the phase plane; the equilibria slightly deviate
from �=n� /2 at small �n� and completely disappear for suf-
ficiently large �n�. The degeneracy of the abrupt nonhysteretic
transition between two states of rest at �=�� is lifted; in-
stead, a narrow interval of the values of � emerges, in which
the stable equilibrium of the pendulum rapidly �but continu-
ously� changes its orientation. The above interpretation of
this transition in terms of balance of energy should in this
case be complemented by incorporation of the elastic energy.
Further, since the “almost head” and “almost tail” orientation
of the coin-shaped pendulum are no more equivalent, they
experience the Hopf bifurcation at slightly different values of
�. The rotating states are, of course, impossible; they are
replaced by “large-scale” �involving many complete revolu-
tions of the disk around the axis� oscillations. Finally, the
formation of the heteroclinic contour disintegrates into a se-
quence of homoclinic and saddle-node bifurcations. All these
qualitative changes, however, remain almost invisible for an
observer as long as the elasticity of the fiber is sufficiently
small.
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